101-105 West Street Draft Upland Site Summary

101-105 WEST STREET (DAR SITE ID # 135)

Address:	101-105 West Street, Brooklyn, New York 11222
Γax Lot Parcel(s):	Brooklyn Block 2556, Lot 57 and 58
Latitude:	40.730181
Longitude:	-73.959573
Regulatory Programs/	
Numbers/Codes:	NYSDEC VCP Code V00231
Analytical Data Status:	Electronic Data Available Hardcopies only
	No Data Available

1 SUMMARY OF CONSTITUENTS OF POTENTIAL CONCERN (COPCs) TRANSPORT PATHWAYS TO THE CREEK

The current understanding of the transport mechanisms of COPCs from the upland portions of the 101-105 West Street site (site) to Newtown Creek is summarized in this section and Table 1, and supported in the following sections.

Overland Transport

The site is located approximately 0.3 mile south of Newtown Creek and associated waterways. This is not a complete current or historical pathway to the creek.

Bank Erosion

The site is not adjacent to Newtown Creek and associated waterways. This is not a complete current or historical pathway to the creek.

Groundwater

Groundwater is approximately 8 to 10 feet below ground surface (bgs) and flows in a northwesterly direction toward the East River which is approximately 500 feet to the west of the site (ECI 1997). This is not a complete current or historical pathway.

Overwater Activities

The site is not adjacent to Newtown Creek and associated waterways. Information regarding overwater activities was not identified in documents available for review. This is not a complete current or historical pathway to the creek.

Stormwater/Wastewater Systems

Information regarding on-site stormwater management and infrastructure was not identified in documents available for review. This site is within the Newtown Creek Water Pollution Control Plant (WPCP) sewershed. Stormwater and wastewater discharges from the site flow into a combined municipal sewer system. When the combined flows exceed the system's capacity, untreated combined sewer overflows (CSOs) are discharged to the East River (NYCDEP 2007). Discharge to sewer/CSO and direct discharge of stormwater and wastewater are not a complete current or historical pathways to the creek.

Air Releases

Information related to air discharges was not identified in documents available for review. There is insufficient evidence to make an historical or current pathway determination.

2 PROJECT STATUS

In 1999 the site entered New York's Voluntary Cleanup Program (VCP), based on the presence of metals, polycyclic aromatic hydrocarbons (PAHs), and volatile organic compounds (VOCs) found during a 1997 site assessment. After the completion of the VCP Remedial Action in 2002, the site was issued a No Further Action Memorandum. The site is listed under the New York State Department of Environmental Conservation (NYSDEC) VCP as a "Class C" site (i.e., the classification used for sites where the NYSDEC has determined that remediation has been satisfactorily completed under a remedial program). A summary of investigation and remedial activities at the site is provided in the following table:

Activity	Date(s)/Comments
Phase 1 Environmental Site Assessment	1997/ Completed by ECI (ECI 1997)
Site Characterization	
Remedial Investigation	1999/ Soil borings and wells installed by ECI and AEAE (ECI 1999b)
Remedy Selection	
Remedial Design/Remedial Action Implementation	1999/ Remedial Work Plan for VCP (ECI 1999b)
Use Restrictions (Environmental Easements or Institutional Controls)	
Construction Completion	2002/ Remedial Action Report (HTE 2002)
Site Closeout/No Further Action Determination	2002/ NYSDEC NFA memorandum (Harrington 2002)

Notes:

AEAE – American Environmental Assessment Corporation

ECI – Environmental Concepts, Inc.

HTE – Hydro Tech Environmental, Corp.

NFA - No Further Action

NYSDEC – New York State Department of Environmental Conservation

VCP – Voluntary Cleanup Program

• NYSDEC Site Code(s): NYSDEC VCP Code V00231

NYSDEC Site Manager: Ioana Munteanu-Ramnic

Previously: Christine Costopoulous

3 SITE OWNERSHIP HISTORY

Respondent Member:	Yes No
--------------------	--------

Owner	Years	Occupant	Type of Operation
Brooklyn Ferry Co. of New York	Unknown – 1912	C. W. Wilson & Company (ca. 1887)	Lumber storage yard
Tenth & 23rd Ferry Co.	1912 – 1924		Unknown
Eberhard Faber Pencil Co.	1924 – 1957	Unknown	Private garage(s)
Perlen Ale	1957 – 1958	Olikilowii	Unknown
Oak-Cal Realty Corporation c/o Bushwick Iron and Steel Company	1958 – 1997		Unknown
Laurel Hill Realty Corporation	1997 – 2006	Safeway Construction	Construction equipment,
Web Realty International, LLC & West Water, LLC	2006 – 2007	Enterprises Inc. (1994 – 2002+)	vehicles and materials storage
93 Waterfront, LLC	2007 – present		

Note:

ca. - circa

Additional discussion and sources provided in Section 6

4 PROPERTY DESCRIPTION

101-105 West Street occupies approximately 0.2 acres¹ located approximately 500 feet east of the East River and 0.3 mile south of Newtown Creek in the Greenpoint neighborhood of Brooklyn. The site is approximately 12 feet above mean sea level. There is a gradual regional slope down to the west and the East River. The site is a lot used for storing construction equipment_(See Figure 1). The site is zoned for residential development. Surrounding and adjoining properties are in residential, commercial, or light manufacturing use (ECI 1999b; NYCDCP 2011).

¹ Acreage is an approximation of the site tax parcel using geographic information system data.

5 CURRENT SITE USE

The site is owned by 93 Waterfront, LLC and used by Safeway Construction Enterprises Inc. for the storage of construction materials and equipment including dump trucks, backhoes, road plates, lumber, rebar, and gravel (NYCDCP 2011; NYSDEC 2012; ECI 1997, 1999b).

6 SITE USE HISTORY

In 1887, the site and the western and northern adjoining properties were occupied by the C. W. Wilson & Company's lumber yard. A lumber storage building and stable were present on the site. The Greenpoint Ferry Company Terminal was located further west, adjacent to the East River (Sanborn 1887). In 1905, the C.W. Wilson & Company's lumber yard had discontinued operations on the northern-adjoining site but continued to occupy the site and the western adjoining site. An office, stable, lumber shed, and tool house were present on the site. The ferry terminal, operated by the Brooklyn Ferry Co. of New York, was present to the west, adjacent to the East River (Sanborn 1905).

In 1912, the Brooklyn Ferry Co. of New York sold the site to the Tenth & 23rd Street Ferry Co. (ECI 1997). In 1916, two "shelters" were present on the property (Sanborn 1916). Note that the ECI Phase I report (1997) stated that the 1916 Sanborn Map showed two "smelters" and a lumber shed on the site. However, review of the map determined that the notation was "shelter" rather than "smelter."

In 1924, the Tenth & 23rd Street Ferry Co. sold the site to the Eberhard Faber Pencil Co (ECI 1997). The Eberhard Faber Pencil Company operated a factory on the east side of West Street (across from the site) between 1872 and 1956. In 1942, the site was occupied by two automobile garages (Sanborn 1942). By 1951, there was a warehouse/garage and paper storage building on the corner of West Street and Kent Street (Sanborn 1951; HTE 2002). The Eberhard Faber Pencil Co. sold the site to Perlen Ale in 1957.

In 2007, eight buildings on six tax lots were designated as the Eberhard Faber Pencil Company Historic District. The site was not included in the historical designation (NYCLPC 2007).

7 CURRENT AND HISTORICAL AREAS OF CONCERN AND COPCS

The current understanding of the historical and current potential upland and overwater areas of concern at the site is summarized in Table 1. The following sections provide brief discussion of the potential sources and COPCs at the site requiring additional discussion.

Potential contaminant areas of concern at the site include areas in which lumber, automobiles and construction materials and equipment were stored and maintained, two hot spots identified in site investigations, and ASTs used to store diesel. COPCs associated with these areas of concern include petroleum hydrocarbons, VOCs, PAHs and other semivolatile organic compound (SVOCs), and metals. NYSDEC identified anthracene, benzo(a)pyrene, and lead as COPCs for the site (NYSDEC 2012).

7.1 Uplands

Formerly, the site stored diesel fuel in two aboveground storage tanks (ASTs; 275 gallons and 250 gallons), and nine 5-gallon fuel containers, which were present on site during the 1997 Phase I Environmental Site Assessment (ESA; ECI 1997).

7.2 Overwater Activities

This site is not adjacent to Newtown Creek or associated waterways. Information regarding overwater activities was not identified in documents available for review.

7.3 Spills

Information regarding on-site spills was not identified in documents available for review.

8 PHYSICAL SITE SETTING

8.1 Geology

The surficial materials beneath the site are till, which is composed of clay, silt, sand, and boulders. It is unsorted, mostly impermeable, and deposited beneath glacial ice (ECI 1997). Soil borings logs describe the soil encountered from the surface to 6 feet bgs as dark to medium brown, dry to moist, medium to coarse sand and gravel. Soil between 6 and 12 feet bgs was described as medium brown, moist to saturated, fine and medium sands (ECI 1999b).

8.2 Hydrogeology

Based on data collected from three on-site groundwater monitoring wells, the general groundwater flow at the site is in a northwesterly direction with groundwater occurring below the site at 8 to 10 feet bgs. A groundwater gradient contour map is provided as Attachment 1 (ECI 1999b).

9 NATURE AND EXTENT (CURRENT UNDERSTANDING OF ENVIRONMENTAL CONDITIONS)

9.1 Soil

Soil Investigations	∑ Yes ☐ No
Bank Samples	Yes No Not Applicable
Soil-Vapor Investigation	☐ Yes ⋈ No

9.1.1 Soil Investigations

Soil investigations at the site included a test pit excavation by ECI in March of 1997 and five soil borings (10 samples, to 6 feet below grade) by American Environmental Assessment Corp. (AEAC) in May of 1997, both located in the southern half of the property as shown on Attachment 2 (ECI 1999b). Eleven additional soil samples were collected from the site in 1999 (ECI 1999b). Selected results are summarized in the following table, and complete results are included in Attachments 3 and 4.

Analyte	Units	Minimum Soil Concentration	Maximum Soil Concentration
Metals			
Arsenic	mg/kg	ND	52
Barium	mg/kg	23.3	406
Chromium	mg/kg	9.53	49
Cadmium	mg/kg	ND	12.5
Lead	mg/kg	1.24	1,930
Mercury	mg/kg	ND	3.5
Selenium	mg/kg	ND	5.6
Silver	mg/kg	ND	ND

		Minimum Soil	Maximum Soil
Analyte	Units	Concentration	Concentration
Copper	mg/kg	8.24	240
Nickel	mg/kg	6.15	33.1
Zinc	mg/kg	24.1	1,490
Iron	mg/kg	10,700	29,300
Cyanide	mg/kg	ND	ND
SVOCs			
Naphthalene	mg/kg	ND	11
1,2,4-trimethylbenzene	mg/kg	ND	0.051
Isopropylbenzene	mg/kg	ND	0.020
1,3,5-trimethylbenzene	mg/kg	ND	0.029
Benzo(a)anthracene	mg/kg	ND	43
Benzo(a)fluoranthene	mg/kg	ND	1,500
benzo(a)fluoranthene	mg/kg	ND	41
benzo(k)fluoranthene	mg/kg	ND	26
benzo(a)pyrene	mg/kg	ND	41
Chrysene	mg/kg	ND	38
Dibenzofuran	mg/kg	ND	12

Notes:

mg/kg – milligrams per kilogram

ND – not detected, detection limits not available

9.2 Groundwater

Groundwater Investigations		Yes No
Nonaqueous phase liquid (NAPL)	Presence (Historical and Current)	Yes No
Dissolved COPC Plumes		Yes X No
Visual Seep Sample Data	Yes	🗌 No 🔀 Not Applicable

Groundwater samples were collected on March 16, 1999, from each of the three monitoring wells at the site. Methyl tertiary butyl ether (MTBE) was detected in all three wells at concentrations ranging from 1 to 10 parts per billion (ppb). Barium (ranging from 61 to 167 ppb), copper (6 to 8 ppb), and iron (315 to 989 ppb) were detected in samples collected from all three wells. Zinc was detected in monitoring well (MW)-3 at 5 ppb (ECI 1999b). Analytical results are provided in Attachments 3 and 4.

9.3 Surface Wa	ater	
Surface Water Inve	stigation	☐ Yes 🔀 No
SPDES Permit (Cur	rent or Past)	☐ Yes ⊠ No
Industrial Wastewa	ter Discharge Permit (Current or Pas	t) Yes No
Stormwater Data		☐ Yes 🔀 No
Catch Basin Solids	Data	☐ Yes 🔀 No
Wastewater Data		☐ Yes ⊠ No
in documents availar sewershed. Stormy municipal sewer sy	ing on-site stormwater management able for review. This site is within the vater and wastewater discharges from stem. When the combined flows exceed to the East River (NYCDEP 2007).	the site flow into a combined
9.4 Sediment		
Creek Sediment Da	ta	Yes No Not Applicable
Information related review.	l to sediment investigations was not i	dentified in documents available for
9.5 Air		
Air Permit		☐ Yes 🔀 No
Air Data		Yes No
Information related	l to air emissions from the site was no	ot identified in documents available
for review.		

10 REMEDIATION HISTORY (INTERIM REMEDIAL MEASURES AND OTHER CLEANUPS)

Remedial actions at the site were performed following completion of the three soil investigations summarized in Section 9. In November of 2001, 89.78 tons of metal-

contaminated soil were excavated and disposed of off site. An area approximately 80 feet by 40 feet was excavated to a depth of 2 feet bgs. Additional excavation to depths of 4 to 6 feet bgs was performed in some areas. Excavated material was removed from the site by a licensed waste hauler and transported to a licensed disposal facility. The excavation was backfilled to grade with clean fill (HTE 2002). The extent of excavation and confirmation sample locations are shown on Attachment 5.

Eight endpoint samples were taken after the soil removal in 2001 and analyzed for VOCs, SVOCs, and metals (HTE 2002). The report concluded that no significant levels of VOCs or SVOCs were detected in endpoint samples and metals were detected at concentrations below regulatory levels requiring further investigatory or remedial actions (HTE 2002). On March 22, 2002, after the Remedial Action Report (February 8, 2002) was completed, the NYSDEC sent a memorandum recommending that no further investigatory or remedial work was required at the site (Harrington 2002).

11 BIBLIOGRAPHY/INFORMATION SOURCES

- ECI (Environmental Concepts, Inc.), 1997. *Phase I Site Assessment*. Prepared for Safeway Construction. March 14, 1997.
- ECI, 1999a. *Voluntary Cleanup Program Application*. Prepared for Guido DiRe, President of Laurel Hill Realty Corp. February 18, 1999.
- ECI, 1999b. Remedial Work Plan for the New York State Department of Environmental Conservation Voluntary Cleanup Program. Prepared for Laurel Hill Realty Corporation. July 1999.
- EDR (Environmental Data Resources, Inc.), 2010. EDR DataMapTM Environmental AtlasTM for "Newton Creek Queens, New York," November 4, 2010.
- Harrington, D. (NYSDEC, Division of Environmental Remediation, Bureau of Hazardous Site Control), 2002. Memorandum Regarding: No Further Action opinion. March 22, 2002.
- HTE (Hydro Tech Environmental, Corp.), 2002. *Voluntary Cleanup Remedial Action Report Volume I of V, Appendices A to F.* 101, 105, and 107 West Street. Brooklyn, New

- York. February 8, 2002.NYCDCP, 2009. Zoning Districts, New York City vector digital data. NYCDCP, Technical Review Division.
- NYCDCP (New York City Department of City Planning), 2011. MapPLUTO™ Ed.11V1 Vector Digital Data. December 2011.
- NYCDEP (New York City Department of Environmental Protection), 2007. *Landside Modeling Report*. City-Wide Long Term CSO Control Planning Project, Volume 6, Newtown Creek WPCP. Final. New York City Department of Environmental Protection, Bureau of Engineering Design and Construction. October 2007.
- NYCLPC (New York City Landmarks Preservation Commission), 2007. *Eberhard Faber Pencil Company Historic District Designation Report*. October 30, 2007.
- NYSDEC (New York State Department of Environmental Conservation), 2012.

 Environmental Site Remediation Database. Accessed January 10, 2012.

 Available from: http://www.dec.ny.gov/cfmx/extapps/derexternal/haz/details.cfm and http://www.dec.ny.gov/cfmx/extapps/derexternal/haz/details.cfm?pageid=3
- Sanborn (Sanborn Map Company), 1887. *Insurance Maps of the Borough of Brooklyn, City of New York.* Volume 4, Sheet 87.
- Sanborn, 1905. *Insurance Maps of the Borough of Brooklyn, City of New York*. Volume 4, Sheet 6.
- Sanborn, 1916. *Insurance Maps of the Borough of Brooklyn, City of New York.* Volume 4, Sheet 6.
- Sanborn, 1942. *Insurance Maps of the Borough of Brooklyn, City of New York.* Volume 4, Sheet 6. Original 1916, revised 1942.
- Sanborn, 1951. *Insurance Maps of the Borough of Brooklyn, City of New York.* Volume 4, Sheet 6. 1951.

12 ATTACHMENTS

Figures

Figure 1 Site Vicinity Map: 101-105 West Street

Tables

Table 1 Potential Areas of Concern and Transport Pathways Assessment

Supplemental Attachments

Attachment 1	Figure 3.	Groundwater	Contour Man	(ECI 1999b)
1 Ittaciiiiciit i	riguit J.	Oloulla water	Goilloui Map	(LOI I)))

Attachment 2 Figure 1: Site Map and Soil Borings Location Map (ECI 1999a)

Attachment 3 Tables 1 - 4: Soil and Groundwater Sampling Analytical Results (ECI

1999b)

Attachment 4 Tables 1 - 6 Analytical Results Phase I (ECI 1997)

Attachment 5 Figure 4: Extent of Excavation (HTE 2002)

Table 1
Potential Areas of Concern and Transport Pathways Assessment – 101-105 West Street

Potential Areas of Concern		Media	a Impa	cted								со	PCs								P	otential	Comple	te Path	way	
Description of Areas of Concern	Surface Soil	Subsurface Soil	Groundwater	Catch Basin Solids	Creek Sediment	Gasoline-Range	Diesel – Range 크	a	pa	OCs SOON	Chlorinated VOCs	svocs	PAHs	Phthalates	Phenolics	Metals	PCBs	Herbicides and Pesticides	Dioxins/Furans	Overland Transport	Groundwater	Direct Discharge – Overwater	Direct Discharge – Storm/Wastewater	Discharge to Sewer/CSO	Bank Erosion	Air Release
Two hot spots (southern portion of the site)	٧	٧	٧	?	?	٧	٧	٧	٧	٧	?	٧	٧	?	?	٧	?	?	٠:		1		1			?
ASTs (diesel fuel storage)	٧	٧	^	?	?	^	٧	٧	٧	٧	?	٧	٧	?	?	^	?	?	?	-						?
Lumber storage area	٧	٧	٧	?	?	?	?	?	?	?	?	?	?	?	?	٧	?	?	?							?
Construction materials and equipment storage areas	٧	٧	٧	?	?	?	?	?	?	?	?	?	?	?	?	٧	?	?	?							?

Notes:

√ – COPCs are/were present in areas of concern having a current or historical pathway that is determined to be complete or potentially complete.

? – There is not enough information to determine if COPC is/was present in area of concern or if pathway is complete.

-- - Current or historical pathway has been investigated and shown to be not present or incomplete.

AST – aboveground storage tank

BTEX – benzene, toluene, ethylbenzene, and xylenes

COPC – constituents of potential concern

CSO - combined sewer overflows

PAH – polycyclic aromatic hydrocarbons

PCB – polychlorinated biphenyl

SVOC – semi-volatile organic compounds

TPH – total petroleum hydrocarbons

VOC – volatile organic compounds

SUPPLEMENTAL ATTACHMENTS

Table 1

SOIL SAMPLING ANALYTICAL RESULTS
FOR
105 WEST STREET
BROOKLYN, NEW YORK

march 2, 1999

Recommended	ACD Hid Mat		\$6.6	4.4	10	更	Ħ	17)	¥	뽀	¥	型	英	型	Ř	펃	¥	逆	ATACAST TRANSFER ANGEN	President de la company de la	ACTION ASSESSED.	CRUMP ON	0000 00H	000 000 000 000	### #####	\$0.00 \$0.00 \$1.00	90000	224 or MDI.	D00000	######################################	1100	翠	41 or MDL	90,000	3200	14 or MD.
AYSUMOTARAM AUAD SCO to Pratect Records	CHV (mg/Kg)		#0.0 #0.0	+£) +£)	4.#	JK.	Ą	4.	ž	N.	ź	것	ME	TZ.	Ź	TK.	¥	¥	T THE PLANT	TENERAL PROPERTY	And the second second	(Redibin) to	the total	of the train	und dec	######################################	90,000	0000	1,900,000	1100	44.00 00 14.00	400	11,000	800,000	azbo	166,000,000
SB-6(S-2) SB-11(S-2)			QN.	Q	QN	Q	Q.	Q.	QN	Q	Q.	<u>Q</u>	2	Q.	N N	2	2	Q.				2	737	2 5	2 5	3100	443	1300	2800	1500	1300	2	1400	Q	436	2
SB-6(S-2)			ND	S	Q	QN	ΩN	ΩN	Ω Q	ΩN	ΩZ	OZ.	ΩN	ΩN	QN	QN	Q	N				2	2 2	2 2	2 2		2 8	QZ	QN	Q	OZ	ON.	Q	N	Q N	Q.
SB-5(S-2)			OZ	Q N	QN	ND	ND	ND	Q.Z	ON.	O _N	ON.	ND	N Q	ΩN	Ω _N	OZ.	Q.				2	2 2	2 2	2 2	Z Z	2 2	S	QN	Q.	ΩZ	Q	QN	Q.	Q	ΩN
SB-4(S-5)	it		ΩN	QN	Q.	ΩN	ND	ND	ΩN	ND	ND	N N	NO.	Q.	QN	Q Q	QN	9				2	5 5	2 2	2 2	2 2	2 2	S	ND	QN	ΩN	ON.	Q	ΩN	ΩN	Q.
Soll Sample ID SB-4(S-2)			OZ.	QN .	QN.	ΩN	S	NO	ON.	ΩZ	OZ.	ΩN	ON.	OZ.	QN	Q	QN	Ω				2	2 2	2 2	2 2	S S	2 2	ON.	ON	Q.	ON N	Q.	Q.	Q.	QN	ΩN
Soil Sample ID SB-3(S-6) SB-4(S-2) SB-4(S-5)			NO	QN	QN	QN	QN N	N O N	QN.	N O N	NO	OZ.	Q.	ON.	QN.	Q.	ΩN	2		2		2	2 2	2 5	2 2	2 2	2 2	2	ND	QN	O.Z.	QN	2	S	OZ.	Q
SB-3(S-2)			Q.	QN.	ΩN	QZ	ΩZ	ΩZ	ΩN	ON ON	ΩN	QN.	Q	2	ON.	QN	ND	Q				2	NO 4	2 2	2000	2300	C N	CZ	2200	970	982	1000	970	N	Ω	ND
SB-2(S-6)			Q.	N O N	ON.	QN	QN	ΩN	ON.	ON.	NO	Q.	S	QN	QV	NO	QN.	ND					2 2	2 2	2 2	2 2	2 2	C Z	ΩN	ON.	QN	QN	N	ND	ND	ΩN
SB-2(S-2)			QN	ND	QN	QZ.	QN QN	ND	2	QN N	2	S	Q.	QN	ON.	Q.	Q	Q.				2	2 2	2 2		2 2	2 2	C Z	QN	ND	QN	S	ON.	QN.	Q	QN
# P	Parameter	VOC's by 8021 (ua/Ka)	Benzene	Ethylbenzene	Toluene	o-Xylene	p-8m-Xylene	Total Xylenes	Isopropylbenzene	n-Propylbenzene	p-Isopropyffoluene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	Naphthalene	Methy-tert-butyl ether (MTBE)				PAH's by 8270 (ug/Kg)	Naphhalene	Anthracene	Fluorene	Phenantriene	Pylene	Renzolalanthracene	Fluorenthene	BenzolbMuoranthene	Benzofkytuoranthene	Chrysene	Benzo[a]pyrene	Benzo(g,h,l)perylene	Indeno[1,2,3-cd]pyrene	Dibenz[a,h]anthracene

*NYSDEC TACM 4046 - New York State Department of Environmental Conservation Division of Hazardous Waste Remediation Technical and Administrative Guidance Memorandum on Determination of Soil Cleanup Objectives and Cleanup Levels, Rev., January 24, 1994

SCO - Soil Cleanup Objectives (NYSDEC TAGM 4046) SB - Site Background concentrations

ND - Not Detected above laboratory detection limit NL - Not Listed for specified compound

MDL - Method Detection Limit

Values in Bold signify exceedence of respective NYSDEC TAGM 4046 Recommended SCO.

Table 1 (Continued)

SOIL SAMPLING ANALYTICAL RESULTS FOR 105 WEST STREET BROOKLYN, NEW YORK

March 2, 1999

				S	Soll Sample ID	0			*******	NYSDEC TAGM 4048*	11/4 40×6*
	SB-2(S-2)	SB-2(S-2) SB-2(S-6) SB-3(S-2)	SB-3(S-2)	SB-3(S-6)	SB-4(S-2)	SB-4(S-5)		SB-5(S-2) SB-6(S-2) SB-11(S-2)	SB-11(S-2)	Enstern 418A	Recommended
Parameter										Background (mg/Kg)	9CO (mg/kg)
Total RCRA Metals by EPA 6010/7000 Series (mg/Kg)	y EPA 6010/700	'O Series (mg/K	(6)								
Arsenic, total	ND	Q.	9.3	QN	1.35	1.45	1.55	1.48	2.6	12	7.5.or 9B
Selenium, total	QN	QZ	QZ	Q.	QN	Ω Z	ΩN	Q	2	3.0	A Gr SB
Chromium, total	9.53	11.6	38	20.6	10.9	9.61	10.5	12.2	18.3	40	10 or 8B
Cadmium, total	OZ	ON.	2.15	ON.	Q N	ON.	ON	ΩN	2.12	, , ,	1 or SB
Lead, total	4.63	5.97	882	5.2	4.24	4.74	21.1	8.85	127	\$00±	\$3
Barium, total	25.8	23.3	406	38.6	37.2	43.8	43.4	38.7	136	500	350 or 98
Silver, total	ON	ND	ΩN	QN	QN	ΩN	QN	ΩN	Q	N/A	THE TAX
Mercury	ON	ON.	3.45	OZ.	ΩN	ON.	1.96	2.73	0.33	400	ů,1
Copper	12.9	8.24	240	12.4	9.26	9.87	12	12.2	72.9	40	2.5 or 9B
Nickel	12.3	13.8	33.1	28.7	15.8	17.5	16.1	16.4	25.9	18	13.0/ 5倍
Zinc	46.1	24.1	682	30.4	31.3	33.8	37.3	33.4	367	40	20-or 5B
Iron	10,700	13,900	29,300	14,000	12,400	13,300	11,800	14,000	18,500	550,000	2,000 or \$E
									*****	NYSDEC TAC	GM 4048*
											1
									****	authoritated with	vecui+hishada
PCB's by 8080 (mg/Kg)	(B)									Quality (mg/Kg)	SCO (mg/kg)
PCB 1016		Q N	SZ	SZ	SZ	SZ	SZ	SZ	SZ	0	무
PCB 1221	ON.	ON.	SZ	SZ	SZ	S N N	SZ	SN	SZ	우	72
PCB 1232	ON.	QN	SZ	SZ	SN	SZ	NS	SZ	SZ	40	\$
PCB 1242	ND	QN	NS	SZ	SZ	SZ	NS	SN	SN	1:0	10
PCB 1248	ON.	QN N	NS	SZ	SN	SZ	NS	SN	SN	10	10
PCB 1254	ON.	N	SN	SZ	SZ	SZ	NS	SZ	NS	10	10
PCB 1260	ON.	QN.	SZ	SZ	SN	SN	SZ	SZ	SN	9	10
PCB Total	ON.	QN.	SN	SN	SZ	SZ	SN	SN	NS	40	10
ND - Not Detected above laboratory detection limit	above laborat	tory detectior	ı limit	SCO - Soil C	Zleanup Obje	SCO - Soil Cleanup Objectives (NYSDEC TAGM 4046)	DEC TAGM	4046)			*
N/A - Not Available for specified compound	For specified	compound		SB - Site Ba	ckground co	SB - Site Background concentrations					
NS - Not Sampled for specified compound	for energined of	pulludund)		i.				
ואס - ואסר סמווייים	IOI openica	2502.50									

Technical and Administrative Guidance Memorandum on Determination of Soil Cleanup Objectives and Cleanup Levels, Rev., January 24, 1994 *NYSDEC TAGM 4046 - New York State Department of Environmental Conservation Division of Hazardous Waste Remediation

Values in Bold signify exceedence of respective NYSDEC TAGM 4046 Eastern USA Background concentration.

^{**}Average background concentration for lead in metropolitan and suburban areas generally range from 200 to 500 ppm (Table 4, Appendix A, NYSDEC TAGM 4046).

Table 2

SOIL SAMPLING ANALYTICAL RESULTS
FOR
105 WEST STREET
BROOKLYN, NEW YORK

March 3, 1999

	Hilled	(X g)			5 000		œ	മ		-	Helied	(B)			th th		既	SE CO				
GM 4046*	Recommended	\$CO.(mg/Kg)		S. C.	2,5 of 5B	# 0	13.01.5B	20 to 58	世	GM AGAB*	Recommended	\$CO.(mg/Kg)		## ## ##	2.5.61 88	# 0	13 or SB	20 01 58	¥			
AYSDEC TAGM 4046"	Eastern USA	Background (mg/kg)		#00h	92	\$\$	稻	8	MtA	WYSDEC TA	Eastern USA	Background (mg/Kg)		**************************************	20	44	88	136	MA			
	SB-7(S-2)			138	SN	SN	NS	NS	NS		SB-11(S-3)			SZ	13.7	ΩN	17.2	42.8	NS			
	SB-7(S-1)			626	SZ	SZ	SN	SZ	NS		SB-11(S-1)			S	62.7	0.47	20.3	229	SZ			
	SB-6(S-3)			SZ	SN	QN	NS	SN	SN		SB-10(S-3)			3.56	NS	ND	NS	SN	SN	M 4046)		
	SB-6(S-1)			SN	SZ	Q.	SN	NS	SN		SB-10(S-2) SB-10(S-3)			4.94	SZ	ΩN	NS	NS	NS	SDEC TAG	SI	paina
	SB-5(S-3)			SZ	SZ	1.11	NS	NS	SZ		SB-10(S-1)			31.6	SZ	1.68	NS	NS	NS	ectives (NY	oncentration	All A Mint A Halle for a new military or many contract
Ol ello	SB-5(S-1)			SZ	SZ	ΩN	SN	NS	SN	Di e ID	SB-9(S-3)			1.42	SZ	O _N	NS	NS	NS	do anno Ob	ckground c	a market and a firm
Coll Samule ID	SB-3(S-3)			9.9	SZ	ΩZ	16.1	33.8	SN	Soll Sample ID	SB-9(S-2)			4.1	SN	ON.	SZ	SN	SN	SCO - Soil Cleanup Objectives (NYSDEC TAGM 4046)	SB - Site Background concentrations	ALLA SILL A.
	SB-3(S-2)			NS	SZ	NS	NS	SZ	Ω		SB-9(S-1)			109	SZ	0.49	S)Z	SN	SZ			
	SB-3(S-1)			11.9	NS	ND	15	30.8	SZ		SB-8(S-3)			5.35	SN	SN	SN	SZ	SN			
	SB-1(S-3)			16.5	18	N	6.15	9.99	SN		SB-8(S-2)			85.1	SZ	SN	SZ	SN	NS	otion limit	*	
			(mg/Kg)	101	50,2	SZ	15.9	119	NS				(mg/Kg)	335	SZ	SN	SZ	SN	SN	araton, data	compound	A STATE OF THE PROPERTY OF THE PARTY OF THE
	SB-1(S-1) SB-1(S-2)		N7000 Series	347	169	0.46	24.7	437	NS		SB-7(S-3) SB-8(S-1)	65 01	97000 Series	3.92	SZ	SZ	SZ	SN	SN	del ayode by	or specified	
		Parameter	Metals by EPA 6010/7000 Series(mg/Kg)	Lead	Copper	Mercury	Nickel	Zinc	Cyanide***			Parameter	Metals by EPA 6010/7000 Series (mg/Kg)	Lead	Copper	Mercury	Nickel	Zinc	Cyanide***	No Not Detection limit	NC - Not Listed for specified compound	

*NYSDEC TAGM 4046 - New York State Department of Environmental Conservation Division of Hazardous Waste Remediation Technical and Administrative Guidance Memorandum on Determination of Soil Cleanup Objectives and Cleanup Levels, Rev., January 24, 1994

Values in Bold signify exceedence of respective NYSDEC TAGM 4046 Eastern USA Background concentration.

^{**}Average background concentration for lead in metropolitan and suburban areas generally range from 200 to 500 ppm (Table 4, Appendix A, NYSDEC TAGM 4046).

^{***}Cyanide analysis by Standard Method 412B

Table 3

TCLP SOIL SAMPLING ANALYTICAL RESULTS FOR 105 WEST STREET BROOKLYN, NEW YORK

April 12, 1999

		Soil Sai	mple ID		NYSDEC TAG	W 4046*
2	SB-3B(S-2)	SB-6B(S-2)	SB-7B(S-1)	SB-11B(S-2)	Atlowable Soll	Protect Water
Parameter	00 00(0 0)		,		Concentrations (ppm)	Quality (ppm)
TCLP Metals by EPA 1311/6010	(ma/L)					
TCLP Lead	0.215	NS	0.136	NS	₽A	N/A
TCLP Mercury	ND	ND	NS	NS	NA	N/A
TCLP Cadmium	ND	NS	NS	ND	NA NA	N/A
TCLP Cyanide	NS	NS	NS	ND	NA.	N/A
, 52. 5, 2		5				
					INVOCTO TACAL AGAES	
					NYSDEC TAGM 4046*	
					Allowable Soil	
TCLP Pesticides by 8080 (ug/L)		and the same of th	1 272	ND	Concentrations (ppb) 5	
Aldrin	NS	NS	NS	ND	2	ži.
alpha-BHC	NS	NS	NS	ND	2	
beta-BHC	NS	NS	NS	ND	4 3	
delta-BHC	NS	NS	NS	ND	96	
gamma-BHC (Lindane)	NS	NS	NS	ND	20	\$1
Chlordane	NS	NS	NS	ND	77	
4,4'-DDD	NS	NS	NS	ND	44	
4,4'-DDE	NS	NS	NS	ND	25	
4,4'-DDT	NS	NS	NS	ND ND	مم 1	
Dieldrin	NS	NS	NS	ND	9	
Endosulfan I	NS	NS	NS	ND	9	
Endosulfan II	NS	NS	NS	ND	40	
Endosulfan sulfate	NS	NS	NS	ND	1	
Endrin	NS	NS	NS	ND	NL.	
Endrin aldehyde	NS	NS	NS	ND	1	
Heptachlor	NS	NS	NS NS	ND	0.2	
Heptachlor epoxide	NS	NS	1.307.75	ND	9,000	
Methoxychlor	NS :	NS	NS	ND	NL NL	
Toxaphene	NS	- NS	NS	IND	176	

ND - Not Detected above laboratory detection limit

NL - Not Listed for specified compound

NS - Not Sampled for specified compound

SB - Site Background concentrations

N/A - Not Available for specified compound

NA - Not Applicable for specified compound

Concentrations of milligrams per liter (mg/L) = parts per million (ppm). Concentrations of micrograms per liter (ug/L) = parts per billion (ppb).

*NYSDEC TAGM 4046 - New York State Department of Environmental Conservation Division of Hazardous Waste Remediation Technical and Administrative Guidance Memorandum on Determination of Soil Cleanup Objectives and Cleanup Levels, Rev., January 24, 1994

Table 4

GROUNDWATER SAMPLING ANALYTICAL RESULTS FOR 105 WEST STREET

105 WEST STREET BROOKLYN, NEW YORK

March 16, 1999

	G MW-1	W Sample I MW-2	D MW-3	NYSDEC TOGS 1.1.1* Class GA Grittinewater
Parameter				Standard/Guldence Vatures (Vg/L)
VOC's by 8021 (ug/L)				
Benzene	ND	ND	ND	1
Ethylbenzene	ND	ND	ND	5
Toluene	ND	ND	ND	5.
o-Xylene	ND	ND	ND	5.
p- & m-Xylenes	ND	ND	ND	5
Total Xylenes	ND	ND	ND	5**
Isopropylbenzene	ND	ND	ND	5
n-Propylbenzene	ND	ND	ND	5
p-Isopropyltoluene	ND	ND	ND	5
1,2,4-Trimethylbenzene	ND	ND	ND	5
1,3,5-Trimethylbenzene	ND	ND	ND	5
n-Butylbenzene	ND	ND	ND	5. 2
sec-Butylbenzene	ND	, ND	ND	#5
tert-Butylbenzene	ND	ND	ND	5
Naphthalene	ND	ND	ЙD	10
Methyl-tert-butyl ether	10	1	2	NL.
PAH's by 8270 (ug/L)		1 29444400		40
Naphthalene	ND	ND	ND	10
Anthracene	ND	ND	ND	50
Fluorene	ND	ND	ND	50
Pyrene	ND	ND	ND	50
Acenaphthene	ND	ND	ND	20
Benzo[a]anthracene	ND	ND	ND	0.002
Fluoranthene	ND	ND	ND	50
Benzo[b]fluoranthene	ND	ND	ND	0:002
Benzo[k]fluoranthene	ND	ND	ND	0.002 0.002
Chyrsene	ND	ND	ND	
Benzo[a]pyrene	ND	ND	ND	粉
Benzo[g,h,i]perylene	ND	ND	ND	NE n.n.n.n.
Indeno[1,2,3-cd]pyrene	ND.	ND	ND	0.002
Dibenz[a,h]anthracene	ND	ND	ND	NL.
Metals by 6010/200 Series (ug/L)	50	1970-A227		, r. s.
Silver	ND	ND	ND	50
Arsenic	ND	ND	ND	25
Barium	61	92	167	\$000; ±
Cadmium	ND	ND	ND	5
Chromium	ND	ND	ND	50
Mercury	ND	ND	ND	0.7
Lead	ND	ND	ND	25
Selenium	ND	ND	ND	10
Copper	7	6	8	200
Nickel	ND	ND	. ND	100
Zinc	ND	ND	5	2,000
Iron	351	366	989	300

ND - Not Detected above the laboratory detection limit

NL - Not Listed for specified compound

^{*}NYSDEC TOGS 1.1.1 - New York State Department of Environmental Conservation
Division of Water Technical and Operational Guidance Series (1.1.1)
Ambient Water Quality Standards and Guidance Values and Groundwater
Effluent Limitations, Rev., June 1998

^{**}Class GA Groundwater Standard listed for individual Xylene concentrations.

Safoway Construction 105 Wost Straat Brooklyn, New York

EPA Method 8240 Results for 0 - 2' Layer

SCO		YN.	YZ.	ΥZ.	<z< th=""><th>5,500</th><th>₹Z</th><th>ź</th><th>ž</th><th>100</th><th>1,000</th><th>Ϋ́N</th><th>009</th><th>1.400</th><th>1,500</th><th>800</th><th>Y.V</th><th>700</th><th>SZ.</th><th>400</th><th>ž</th><th>200</th><th>1,200</th><th></th></z<>	5,500	₹Z	ź	ž	100	1,000	Ϋ́N	009	1.400	1,500	800	Y.V	700	SZ.	400	ž	200	1,200	
AVG						100									100								100	
Concentration	1	GN	CN	CN	QN	QN	QN	QN	QN	QN	QN	ON	QN	QN	QN	QN	GN	QN	GN	Q	QN.	GN	QN	
Compound		1,2-Dichloropropane	cis-1,3-Dichloropropylene	trans-1,3-Dichloropropylene	Ethanol	Ethybenzene	Ethyl methacrylate	2-Hexanone	lodomethane	Methylene chloride	4-Methyl-2-pentanone	Styrene	1,1,2,2-Tetrachloroethane	Tetrachlorethylene	Toluene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethylene	Trichlorofluoromethane	1,2,3-Trichloropropane	Vinyl acetate	Vinyl chloride	Xylenes	
SCO		200	NA	NA	60	NA	NA	AN	300	2,700	009	1,700	1,900	NA	NA	NA	NA	NA	AN	AN	200	100	400	000
AGV					14									*										
Concentration		ON	CN	ON	ON	QN	QN	ND	ND	ON	ON	ON	ON	ON	ON	ON	QN	QN	QN	QN	ON	QN.	ON .	CZ
Compound		Acetone	Acrolein	Acrylonitrile	Benzene	Bromodichoromethane	Bromoform	Bromomethane	2-Butanone	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	2-Chloroethylvinyl ether	Chloroform	Chloromethane	Dibromochloromethane	Dibromomethane	1,4-Dichloro-2-butene	Dichlorodifluoromethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethylene	1 2. Dichloroethylene

All concentrations are in micrograms per kilogram (ug/kg).

ND - Not detected

AGV - Alternative Guidance Value

SCO - Soil Cleanup Criteria

TABLE 1 (cont)
Safeway Construction
105 West Street
Brooklyn, New York

EPA Method 8260 Results for 0 - 2' Layer

SCO	NA	NA	VN	N/N	5,500	NA	AN	AN	100	13000	NA NA	Ϋ́Z	AN	009	1,400	1,500	NA	VN	800	ΥZ	700	SZ.	400	Ϋ́Ζ	VN	Y Z	200	1,200	1,200	ζZ.	
AGV					100		100	100		200	100					100									100	100		100	100	1,000	
Concentration	QN	QN.	QN	QN	QN	CN	QN	GN	QN	11,000	CN	QN	QX	QV	QN	QN	CN	CN	QN	QN	QN	CN	S	S	51	GN	QN	QN	QN	QN	
Compound	2,2-Dichloropropane	1,1-Dichloropropylene	cis-1,3-Dichloropropyplene	trans-1,3-Dichloropropylene	Ethylbenzene	Hexachlorobutadiene	Isopropylbenzene	p-Isopropyltoluene	Methylene chloride	Naphthalene	n-Propylbenzene	Styrene	1,1,1,2-Tetrachloroethane	1,1,2,2-Tetrachloroethane	Tetrachloroethane	Toluene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethylene	Trichlorofluoromethane	1,2,3-Trichloropropane	1,2,3-Trimethylbenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Vinly chloride	o-Xylene	p- & m-Xylenes	MTBE	
SCO	60	NA	NA	AN	NA	NA	AN	AN	NA	009	1,700	1,900	300	AZ	VN.	NA	AN	AN	AN	AN	AN	7,900	1,600	8,500	AN	200	100	400	300	NA	300
AGV	14						100	100																							
Concentration	QN	QN	CN	QN	ON	ND	QN	QN	GN	ON	ON	ON	ON	QN	QN	QN	ON	ON	CN	CN	QN	QN	ON	ON	ON	QN	QN	QN	QN	ON	QN
Compound	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	1-Chlorohexane	Chloromethane	2-Chlorotoluene	4-Chlorotoluene	Dibromochloromethane	1,2-Dibromo-3-chloropropane	1,2-Dibromoethane	Dibromomethane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Dichlorodifluoromethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethylene	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichloropropane

All concentrations are in micrograms per kilogram (ug/kg).

ND - Not detected AGV - Alternalive Guidance Value SCO - Soil Cleanup Criteria

TABLE 2

Safeway Construction 105 West Street Brooklyn, New York

Priority Pollutant Metals Results for 0 - 2' Layer

Metal	Concentration	SCO
Arsenic:	52.0	7.5 or SB
Selenium	5.56	0.2 or SB
Thallium	ND	SB
Antimony	9.34	SB
Lead	1,930	SB
Beryllium	ND	0.16 or SB
Chromium	49.3	10 or SB
Cadmium	12.5	1.0 or SB
Copper	649	25 or SB
Nickel	30.9	13 or SB
Zinc	1,490	20 or SB
Silver	ND	SB
Mercury	1.27	0.1
Iron	54,900	2000 or SB

Metals concentrations are in milligrams per kilogram (mg/kg). SVOC concentrations are in micrograms per kilogram (ug/kg).

ND - Not detected

SCO - Soil Cleanup Objective

SB - Site Background concentration

Lead SB in metropolitan areas ranges from 200 to 500 mg/kg.

Table 3

Safeway Construction 105 West Stract Brooklyn, New York

EPA Method 8270 Results for 0 - 2' Layer

sco	YZ.	200	1000	AN	120000	1900000	350000	1400	AN	YN YN	NA.	32000	4400	36400	100	006	13000	430	NA	NA	200	330	100	< Z	Y Z	1000	220000	30	665000	N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/	100	YZ
AGV						1000	1000					0.04					200										1000		1000			
Concentration	ON	CN	QN	ON	QN	CN	GN	QN	GN	QN	QN	GN.	QN	GN	QN	QN	QN	N ON	CN	CN	S	GN	QN	QN	GN	QN	CN	QN	QN	CN	QN	QN
Compound	4,6-Dinitro-2-methylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrololuene	Di-n-octylphthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	2-Methylnaphthalene	2-Methylphenol	4-Methylphenol	Naphthalene	2-Nitroaniline	3-Nitroaniline	4-Nitroaniline	Nitrobenzene	2-Nitrophenol	4-Nitrophenol	N-Nitrosodiphenylamine	N-Nitrosodi-n-propylamine	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	1,2,4-Trichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol
SCO	000006	41000	700000	3000	1100	1100	800000	11000	AN	NA	NA	NA	435000	YN.	122000	NA	AN	NA	AN	AN A	400	1.65E+08	6200	8100	1600	8500	7900	ΥN	AN	7100	Υ _Z	2000
AGV		1000		0.04	0.04		0.04	0.04													0.04	1000							93			
Concentration	QN	ON	QN	QN	QN	ON	QN	QN	QN	CN	ON.	CZ	QN	ON	NO	QN	ND	ON	ND	QN .	QN	ND	ON	QN	QN	QN	ON	ON	CN	QN	CN	CN
Compound	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Benzo(a)pyrene	Benzyl alcohol	Bis(2-chloroethoxy)methane	Bis(2-chloroethyl)ether	Bis(2-chloroisopropyl)ether	Bis(2-ethylhexyl)phthalate	4-Bromophenyl phenyl ether	Butyl benzyl phthalate	4-Chloroaniline	2-Chloronaphthalene	4-Chloro-3-methyl phenol	2-Chlorophenol	4-Chlorophenly phenyl ether	Chrysene	Dibenz(a,h)anthracene	Dilbenzofuran	Di-n-butylphthalate	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	3,3-Dichlorobenzidine	2,4-Dichlorophenol	Diethylphthalate	2,4-Dirnethylphenol	Dimethylphthalate

All concentrations are reported in micrograms per kilogram (ug/kg).

ND - Not detected

AGV - Alternative Guidance Values

SCO - Soil Cleanup Objective

TABLE 4

Safeway Construction 105 West Street Brooklyn, Now York

EPA Method 8240 Results for 2' - 5.5' Layer

Concentration AGV	800	0	Compound.	Concentration	AVG	200
QN	200	0	1,2-Dichloropropane	CN		<z< td=""></z<>
CZ	۲	_	cis-1,3-Dichloropropylene	CN		<z< td=""></z<>
CZ	AN		trans-1,3-Dichloropropylene	ON		NA
ND 14	09	-	Ethanol	GN		۲ ۲
CZ	AN		Elhybenzene	ON	100	5,500
CN	AN	-	Ethyl methacrylate .	CN		ν _ν
CN	YZ	_	2-Hexanone	CN		ŠZ.
ON	300	0	lodomethane	QN		ž
CN	2,700	00	Methylene chloride	QN		100
CN	009	0	4-Methyl-2-pentanone	CN		1,000
QN	1,700	00	Styrene	CN		₹ Z
CZ	1,900	00	1,1,2,2-Tetrachloroethane	QN		009
ON	AN	ď	Tetrachlorethylene	CN		1,400
CZ	AN		Toluene	CN	100	1,500
CN	AN	6	1,1,1-Trichloroethane	GN		800
CZ	NA	6	1,1,2-Trichloroethane	QN.		ΥN
ON	AN	~	Trichloroethylene	QN		700
CZ	AN	d	Trichforofluoromethane	QN		Υ _N
CZ	AN	6	1,2,3-Trichloropropane	Q		400
CZ	200	0	Vinyl acetate	GN		ď Z
QN	100	0	Vinyl chloride	CN		200
QN		0	Xylenes	GN	100	1,200
QN	400					

All concentrations are in micrograms per kilogram (ug/kg).
ND - Not detected
AGV - Alternative Guidance Value
SCO - Soil Cleanup Criteria

TABLE 4 (cont)

Safeway Construction 105 West Street Brooklyn, New York

EPA Method 8260 Results for 2' - 5.5' Layer

SCO	YN.	NA NA	ΥZ Z	YZ	5,500	SZ Z	SX.	×	100	13000	NA	NA	₹Z	009	1,400	1,500	NA	NA	800	×	700	NA	400	ź	×	N	200	1,200	1,200	×N	
AGV	·				100		100	100		200	100					100									100	100		100	100	1,000	
Concentration	QN	GN	CN	CN	GN	QN	20	ON	QN	390	QN	QN	CN	QN	GN	CN	GN	GN	QN	CN	CZ	QN	GN	CN	99	29	CN	GN	S	CN	
Compound	2,2-Dichloropropane	1,1-Dichloropropylene	cis-1,3-Dichloropropyplene	trans-1,3-Dichloropropylene	Ethylbenzene	Hexachlorobutadiene	Isopropylbenzene	p-Isopropyltoluene	Methylene chloride	Naphthalene	n-Propylbenzene	Styrene	1,1,1,2-Tetrachloroethane	1,1,2,2-Tetrachloroethane	Tetrachloroethane	Toluene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethylene	Trichlorofluoromethane	1,2,3-Trichloropropane	1,2,3-Trimethylbenzene	1,2,4-Trimelliylbenzene	1,3,5-Trimelhylbenzene	Vinly chloride	o-Xylene	p- & m-Xylenes	MTBE	
SCO	09	NA	NA	NA	NA	NA	YZ.	NA	NA	009	1,700	1,900	300	NA	NA	NA	ΥN	ΥN	VN VN	۲Z	VN VN	7,900	1,600	8,500	NA	200	100	400	300	ΥN	300
AGV	14						100	100																			2				
Concentration	GN	QN	QN.	CN	ON	ON	CN	S	ON	QN.	ON	QN	ON	ON.	ND	QN	ON	QN	QN	QN.	ON	QN	ON	QN	ON	ON	QN	QN	ON	ON	CN
Compound	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	1-Chlorohexane	Chloromethane	2-Chlorotoluene	4-Chlorotoluene	Dibromochloromethane	2-Dibromo-3-chloropropane	1,2-Dibromoethane	Dibromomethane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Dichlorodifluoromethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethylene	1,2-Dichloroethylene	1,2-Dichloropropane	1,3-Dichloropropane

All concentrations are in micrograms per kilogram (ug/kg).

ND - Not detected

AGV - Atternative Guidance Value

SCO - Soil Cleanup Criteria

TABLE 5

Safeway Construction 105 West Street Brooklyn, New York

Priority Pollutant Metals Results for 2' - 5.5' Layer

Metal	Concentration	SCO
Arsenic	11.4	7.5 or SB
Selenium	1.52	0.2 or SB
Thallium	ND	SB
Antimony	3.27	SB
Lead	310	SB
Beryllium	ND	0.16 or SB
Chromium	29	10 or SB
Cadmium	2.34	1.0 or SB
Copper	92.9	25 or SB
Nickel	19.7	13 or SB
Zinc	345	20 or SB
Silver	ND	SB
Mercury	0.75	0.1
Iron	18,000	2000 or SB

Metals concentrations are in milligrams per kilogram (mg/kg). SVOC concentrations are in micrograms per kilogram (ug/kg).

ND - Not detected

SCO - Soil Cleanup Objective

SB - Site Background concentration

Lead SB in metropolitan areas ranges from 200 to 500 mg/kg.

AGV - Alternative Guidance Value

Table 6

Safeway Construction 105 West Street Brooklyn, New York

EPA Method 8270 Results for 2' - 5' Layer

	1000	1000	1000 1000 1000 200 200	1000 1000 200 200	1000 1000 200 200	1000 10000 10000 1000 1000 1000 1000 1
59000 15000 ND	15000 15000 ND ND ND ND	28000 150000 15000 ND ND N	59000 150000 ND ND N	59000 15000 15000 ND ND N	22000 ND ND ND ND ND ND ND ND ND ND	22000 ND ND N
Fluoranthene Fluorene Hexachlorobenzene	Fluoranthene Fluorene Hexachlorobenzene Hexachlorocyclopentadiene Hexachloroethane	Fluorene Fluorene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-cd)pyrene , Isophorone 2-Methylnaphthalene	Fluorene Fluorene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Indeno(1,2,3-cd)pyrene , Isophorone 2-Methylnaphthalene 2-Methylphenol Hoxphitalene 2-Methylphenol Naphthalene 3-Mitroaniline 3-Mitroaniline			
800000 ·				_		
0.04						
2001	Q Q Q	ND N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ND N	ND N	MD ND
The state of the s	lenzyl alcohol loroethoxy)methane -chloroethyl)ether	oroethoxy)methane chloroethyl)ether loroisopropyl)ether hylhexyl)phthalate chenyl phenyl ether	rocyl alcohol rocithoxy)methane hloroethyl)ether roisopropyl)ether lylhexyl)phthalate henyl phenyl ether enzyl phthalate hloroaniline ronaphthalene -3-methyl phenol	snzyl alcohol proethoxy)methane chloroethyl)ether oroisopropyl)ether nythexyl)phthalate bhenyl phenyl ether conaphthalene oronaphthalene shorophenol thenly phenyl ether chysene. (a,h)anthracene	Jenzyl alcohol Joroethoxy)methane -chloroethyl)ether hloroisopropyl)ether ethylhexyl)phthalate ophenyl phenyl ether I benzyl phthalate Chloroaniline -Chlorophenol	Bis(2-chloroethoxy)methane Bis(2-chloroethoxy)methane Bis(2-chlorosepropyl)ether Bis(2-chloroisopropyl)ether Bis(2-cthylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chloroaphthalene 2-Chloroaphthalene 2-Chlorophenol 2-Chlorophenol Dibenz(a,h)anthracene Dibenz(a,h)anthracene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 3,3-Dichlorobenzene 2,4-Dichlorophenol

All concentrations are reported in micrograms per kilogram (ug/kg).

ND - Not detected

AGV - Alternative Guidance Values

SCO - Soil Cleanup Objective

West Street

Legend

Limits of Excavation to Two (2) Feet Below Grade

Limits of Excavation to Four (4) Feet Below Grade

EP-01

End Point Sampling Location

2171 Jericho Turnpike, Suite 150A Commack, New York 11725

Phone: (631) 462-5866 Fax: (631)462-5877 www. hydrotechenvironmental.com

Figure 4: Extent of Excavation

Scale: 1inch = 20 feet
Drawn by: MR
Approved By: ME

Approved By: ME File Name: excavation.dwg

Job No.: 012015 | Client No.: 01110 | Geologist: MR | Date: 01/25/02 Vacant Lot

101, 105 & 107 West Street Brooklyn New York